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Abstract

A new efficient method is developed in this paper for buckling analysis of a cross-ply laminated cylindrical
shell under torsion subjected to mixed boundary conditions. The transverse shear is taken into account by
a first-order theory with a shear correction factor of 5/6. The mixed boundary conditions include conditions
in forces as well as conditions in displacements, and these forces and displacements are selected as basic
unknowns. The other displacements and forces are expressed in terms of the basic unknowns by taking
inverse of a matrix composed of operators. The equations of buckled equilibrium in terms of the basic
unknowns are solved with double trigonometric series which satisfy the mixed boundary conditions. Com-
parison of the obtained numerical results with those given in the literature based on completely clamped
boundary conditions checks with the fact that the mixed boundary conditions yield appreciably lower
buckling load and less circumferential wave number than the completely clamped boundary conditions. The
curves in the figures show how the difference in buckling loads between the two kinds of boundary conditions
varies when the length and thickness of the shell vary. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The buckling of cylindrical shells under torsion (torsional buckling) has been much less studied in
contrast to the buckling under axial compression (compressive buckling), especially for anisotropic
shells. The main difficulty involved in the torsional buckling is in that firstly the nonlinear terms
in the equations of buckled equilibrium include partial derivatives both in axial direction and in
circumferential direction, so that the single-wave buckling mode, which is useful in the analysis of
compressive buckling, does not work, and secondly the boundary conditions in torsional force 7,
and in torsional moment M,, can hardly be satisfied beforehand by the assumed buckling mode.
Simitses and Shaw (1985) and Hui and Du (1987) solve the difficulty for Donnell-type shallow
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shells without transverse shear by introducing a stress function and assuming a multi-wave buckling
mode such as truncated trigonometric series in 0 with the coefficients being functions of x, where
x is the axial coordinate in length and 0 is the circumferential coordinate in angle. Thus the
equations of equilibrium and compatibility reduce to ordinary differential equations for the
coefficients of the series, and the original boundary conditions yield boundary conditions for the
solution of these ordinary differential equations.

In principle, the above solution procedure may apply to non-shallow shells with transverse
shear. But in this case the number of the unknowns will be five and, due to the use of non-shallow
shell theory, no simple stress function can be introduced to reduce that number. The above solution
procedure will then be much more involved. To solve the problem, Tabiei and Simitses (1994)
express the equations of equilibrium in terms of the three displacements and two rotations and
solve them with double trigonometric series which vanish at the boundaries. Tabiei and Simitses’
method is useful when all boundary conditions are in displacements and rotations, i.e., the shell is
completely clamped at its ends, or when the shell is long enough so that the boundary conditions
play little role. However, in the case of mixed boundary conditions, some of the conditions are
given as boundary forces. They can hardly be satisfied beforehand by the double trigonometric
series for displacements and rotations assumed by Tabiei and Simitses (1994). That is why the
torsional buckling of transversely shear deformable shells under mixed boundary conditions has
not yet been studied much.

In many practical cases, however, the real physical boundaries may be described better by
mixed boundary conditions than by completely clamped boundary conditions. Therefore, solution
methods are needed to deal with mixed boundary conditions. The present study undertakes this
task to develop such a method. In the present study, the displacements (including rotations) and
forces (including moments) appearing in the mixed boundary conditions are selected as basic
unknowns and are expressed in terms of different kinds of double trigonometric series which satisfy
the mixed boundary conditions. Then, by taking inverse of a matrix composed of operators, all
other displacements and forces, and hence the five equations of buckled equilibrium, can be
expressed in terms of the five basic unknowns. Finally, the application of the Galerkin procedure
to the equations of buckled equilibrium leads to an eigenvalue problem. The numerical results of
examples show that the mixed boundary conditions lead to lower buckling load and less cir-
cumferential wave number of the buckling mode than the completely clamped boundary conditions.

2. Basic equations

A thin cross-ply cylindrical shell subjected to torsion is under consideration. In the first-order
shear-deformation theory the displacement field of a cylindrical shell is

uy,=u+zy, u,=v+zp, u.=w (1)

where (x,y,z) are, respectively, the axial, circumferential and normal coordinates in length,
(u, u,, u.) are their corresponding displacement components at an arbitrary point of the shell, and
(u, v, w) are those components at the middle surface. The linear strains at an arbitrary point of the
shell can be derived from the displacement field,
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These strains coincide with the general first-order shear-deformation kinematic relations of Tabiei
and Simitses (1994) for linear case, if the thin shell assumption z/R « 1 is taken into account.
The definitions of the stress resultants are as usual

T, = Jax dz, T,= Jay dz, M, = faxz dz, M, = Ja},z dz

M, = er},z dz
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where

h/2
J: J , h 1s the thickness of the shell
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By introducing vectors
{O-} = (TY’ T)r” IY),'S Mxﬁ M)’ Mxy? Qy’ QX)T

{8} = (Sx’ Sya y,\’ys Ky, Kya ny’ yyza y,\’:)T
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are the strains and curvature changes of the middle surface, the constitutive equations for cross-
ply laminates can be written in matrix form

{o} = [Cl{e} )
where
[4] [B] Ay, A B, B,
[C]1=|[B] [D] . (Al =14, A . [Bl=|Bi> By

[A*] A66 B66
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The equations of equilibrium developed by Stein (1986) are used in the present study. For a thin
shell, after imposing the following three assumptions about the nonlinear terms:

(a) The only load is the boundary torques, so that all nonlinear terms not related to the torsional
force T,, are neglected;

(b) All nonlinear terms not related to w or its derivatives are neglected;

(c) All nonlinear terms not in the equation of normal equilibrium are neglected;

these equations reduce to

a T\‘ a T‘c y

ox 2 =0 (5a)
0T, 0T, O, _
ox 3 + R 0 (5b)
00, 00, T, Pw
0x + dy R telo oxdy 0 (3¢)
oM, oM,
ox Ty &0 (5d)
oM, oM, B
ax + 8)} _Qy - 0 (Se)
and the variationally consistent boundary conditions can be written in the form
(T.ou)ls =0 (6a)
T ow +0, )0 T 0 (6¢)
Xy ay X w . - C
(M. oy)|5 =0 (6d)
(M ,00)|5 =0 (6¢)
(T ou)l5™ =0 (7a)
(T,00)[5" =0 (7b)

- =0 (7c)

0

[(TXJ, Zi} + QJ,> 5w]




R. Mao, C.-H. Lu | International Journal of Solids and Structures 36 (1999) 3821-3835 3825
(M, oY) 15" =0 (7d)
(M,60)[5" =0 (7e)
The symbols |5 and |3" are defined as
(Tou)lg = (T0u)— — (T, 0u),—y, and so on;
(Txyéu)hzfZ = (T\‘yéu)OZZTE - (Tvyéu)l)zos and so on

where L and R are, respectively, the length and radius of the shell, 0 = y/R and S is the torsional
force per unit length of y produced by the boundary torques. Conditions (7a—e) can be satisfied
by the requirement that all displacements and forces appearing in these conditions be periodic in
0 with a period equal to 2n. For conditions (6a—¢), the following mixed boundary conditions are
assumed

T.=0, T,=S, w=0, M,=M,=0 atx=0L (8)

It is obvious that conditions (6a—¢) will be satisfied if conditions (8) are satisfied.

Equilibrium equations (5a—e) and boundary conditions (6a)—(7e) coincide with those of Tabiei
and Simitses (1994) for thin shells using the first-order shear-deformation kinematic relations. The
equations of Tabiei and Simitses (1994) is based on Donnell-type theory. This suggests that the
error caused by the preceding assumptions (a)—(c) can be expected not to be larger than that of
Donnell-type theory.

More complete equations of equilibrium for a thin cylindrical shell are given by Flugge (1960).
These equations correspond to a system of kinematic relations in which all nonlinear terms of u, v
and w are retained.

3. Solution

The five variables T, T,,, w, M, and M, appearing in the mixed boundary conditions (8) are
selected as basic unknowns. The equations of buckled equilibrium (5a—¢) can be transformed into
a system of five equations in the basic unknowns by eliminating all other displacements and forces.
To do this, the displacements and rotations u, v,  and ¢ are expressed in terms of the basic
unknowns by using eqn (4) to obtain

u T.—A,,w/R
v M,—B,w/R
] = )
w Txy
@ M,

where
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Let I';; represent the elements of [I'], A;; be the cofactor of the element I';;, and A be the determinant
of [I']. They are all operators. The inverse of [I'] can be written as

17" =A""A] (10)
Substitution of eqn (10) into eqn (9) gives

u T.—A,w/R
v M,.—B,w/R
A = [A;] (11)
lp T‘(y
® Mxy

The stress resultants 7,, M, O, and Q, can then be expressed in terms of the basic unknowns
through the constitutive equations:

Toe i, (P )5, g 00 12

y = Iz@x+ 22 6y+R + 128x+ 22(3)/ (12a)
Ju v w o 30

M, = B, §x+B22 <§y+R>+D12 ox +D>, oy (12b)
ow

O, = Ass 87‘*'1# (12¢)
X
ow v

0, = A (6}/ R +(P> (12d)

By application of the operator A to each side of eqns (5b—) and using eqns (12a—d) and eqn (11)
to eliminate 7, M, Q. and Q,, eqns (5a—e) can be transformed into a system of five final equations
in the five basic unknowns. These final equations are too lengthy to be presented here.

The five final equations are solved with truncated double trigonometric series

T, = XSF2sina,,x(T,, cosnd+ T,,, sin nd) (13a)
T,, = S+X(cosa, | X—C0S %, 1X)(S,, cosnd+ S,,.. sin n0) (13b)
w = X sin o, x(W,,, cos n0+ W,,, sin n0)) (13¢)
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M, = Xsina,x(H,, cosnd+ H,,, sinnb) (13d)
M,, = X(cosa,, Xx—co8a,,  x)(F,,cosnl+F,, sinnb) (13e)
where, and in the following, the symbols

M M mm
Z mZ::l ngl ’ o L

are used for brevity in writing. The constant coefficients T,,, T,., ..., F,, are to be determined.

Trigonometric series (13) satisfy the mixed boundary conditions (8).

Before using the Galerkin procedure, a closer inspection of the operators in eqns (11) is useful.
The operator A is a fourth-order homogeneous polynomial in d/0x and J/0y. Each term of the
polynomial includes one of the operators 0*/dx*, ¢*/(0x*dy*) and ¢*/0y*. Therefore, when the
operator A is applied to a product of trigonometric functions such as sin «,,x cos nf, a very simple
result can be obtained

A(sin o, x cosnf) = (A, sina,,x cosnd (14)

where the symbol (A},,, is a number denoting the determinant of a matrix obtained by replacing
d/0x and 0/0y with a,,, and f,, respectively, in the operator A, where f8, = n/R. Each of the operators
A, (i,j=1,2,3,4) is a third-order polynomial in J/0x and 0/dy. Each term of the polynomial
includes one of the operators ¢°/0x*, 3°/(0x* dy), 0°/(dx dy*) and 0°/d)”. Further, it is found that for
an operator A, the terms of its polynomial are either all in ¢°/0x* and 0°/(dx 0)?), or all in 8*/dy
and °/(0x* dy). Therefore, the operators A, are divided into two groups, one with odd power of
0/0x for all terms, the other with odd power of 0/dy for all terms. It is obvious that for an A;; from
the first group, the following relationships are valid:

A (sina,x cosnl) = —<A;;»,, cosa,,x cos nd (15a)
A (sina,xsinnd) = —{A;),, cos o, x sin n0 (15b)
Aj(cos o, x cosnll) = {A;;»,,, sina,,x cosnl (15¢)
Aj(cos o, x sinnb) = {A;;»,,, sina,,x sin n (15d)
and for an A, from the second group, eqns (15a—d) should be replaced by
A (sino,,x cosnb) = {A;»,,, sina,x sinnf (16a)
A,(sino,,xsinnd) = —<A;),, sino,x cosnd (16b)
Aj(cos o, x cosnll) = {A;;>,,, cos a,,x sin nf (16¢)
Aj(cos o, xsinnb) = — <A, cos o,,x cos nb (16d)

where the symbol {A,>,, is a number obtained by replacing d/dx and 0/dy with o, and S,
respectively, in the operator A,;.

Substituting the trigonometric series (13a—e) into the five final equations (not presented), taking
into account eqns (15a—d) and (16a—d) and executing the Galerkin procedure yield the following
algebraic equations:
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STy Hy+ 2 S+t Fon) = 15 (17)
T T+ Hy+ XS+ G Fon) = 11" (18)
Fi Ty Hy+ZCF oS+ T o) = £ I/Vij (19)
T Ty +F i Hy+ 2GS+ nFo) = 13 Wy (20)
STy + 13 Hy + 2 S+ S Fon) + 135" W+ 28Zt,, B, CAY s Hin D Wi = 0 ey
T Ty + 13 Hy + 2 S+ i Fon) + 135" Wiy — 28Zt, B, KA ity Wiy = 0 (22)
SE T+ Hy+ 2 S+ o) = 15 W, (23)
TE T+ Hy+ 2 VoS + S o Fon) = T4 W 24
SE Ty L Hy (S S+ G Fo) = 15 W, (25)
TG T+ 5 Hy+ 2 oS+ G Fon) = T W, (26)

wherei=1,2,...,.M;j=1,2,...,N, and
2[1—(=1)"i {1 ifi=j
L s, =

e ) 0 ifik)
In the derivation of eqns (21) and (22) the assumption
o*w o*w
2T

Y oxdy ~28 0x dy

has been made for linearization so that an eigenvalue problem can be obtained. All the coefficients
in eqns (17)—(26) are listed in the Appendix.

From eqns (17) and (23), T, and H;; can be solved in terms of S, F;; and W, Similarly, from
eqns (18) and (24), T,;and H;; can be solved in terms of S, F;;and W, By using these results, T,
H,, T;and H; in eqns 21), (22) (20), (26), (19) and (25) are ehmlnated to give

Z(C;;ISnnSmn + C;;;HIIETI)I) + C” " W + 2Szan1ﬂi1<A>mnnin15jz1 Wmn = O (273)
Z(C:;;1)1S111n + C?/{nn mn) + CHH - 2SZOCmﬁn<A>mnrlm15/n Wmn - 0 (27b)

D D] (Som by
z ¢s of How (27C)
bijnm bz/mn mn b
bi’fmn b 'mn by
sos B | \F . (27d)
blj"“’l b[]ﬂﬂl 171” b
The expressions of the new coefficients appearing in eqns (27a—d) are not given here for the sake

of brevity.
By introducing vectors

ijo

{(]} = (SIUSZI:"'DSMla"'7SIN9S2N5"'9SMN9F115F217"'7FM17'"’F]NaFZNa"'aFMN)T
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{g} = the same as above but with a super bar on each element.
{17} = (Wlla W213“‘7 WMI:"'? W1N7 W2Na"'7 WMN)T
{ii} = the same as above but with a super bar on each element.

eqns (27a—d) can be transformed into matrix form

[Q{g} +[Al{n} + S[E]{ij} = 0 (28a)
[Q]{q} +[Al{7} — S[E]{n} =0 (28b)
[@]{q} = [P]{7}} (28¢)
[@1{g} = [¥]{n} (28d)

Again the expressions of the coefficient matrices in (28a—d) are not presented. Eliminating {¢} and
{g} in eqns (28a—d) yields a set of equations in {x} and {7},

[K1{n} +S[E]{i7} =0 (29a)
[K]{} —S[E]{n} =0 (29b)
where

[K] = [Q][®] ' [¥]+[A]
[K] = [Q] [®]'[\P]+[A]
Eqns (29b) and (29a) give

1 _
n} = LBV IR {7} (30)

([A]=S*[1) {71} =0 (31)
where [/] is a unit matrix and [A4] is defined by
[4] = —[E]"'[K][E]"'[K]

Eqn (31) is the eigenvalue problem for the buckling load, S.,, and half of the buckling mode
vector, {7j.}. The other half, {1}, can be obtained with eqn (30). From eqn (31) it is found that
if S, is a buckling load, then — S, is a buckling load, too. This conclusion is in agreement with
the fact that if a boundary torque causes buckling, then the reverse of it causes buckling, too.

4. Numerical examples
The first example is a laminated cylindrical shell studied by Tabiei and Simitses (1994), with the
ply properties
El] = 149619 GPa, E22 = E33 = 9928 GPa, G|2 = G|3 = 4481 GPa
623 = 2551 GPa, VIZ = V]3 = 028, V23 = 045
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and the stacking sequence (0°/90°/0°),. It is obvious that the more terms are used in the truncated
series (13a—¢), the better results can be obtained and larger amount of computation is needed. The
study of convergence indicates that M = 6 and N = 10 can guarantee that the buckling load to be
obtained has more than four significant digits for all examples studied in this Section. Let S¥ and
S.. denote, respectively, the buckling loads based on the first-order shear deformation theory with
and without a shear correction factor of 5/6. For R/h = 100, L/R =1 and & = 0.001905 m, the
calculation gives the buckling loads (in 10° N/m) S* = 0.1391(8) and S., = 0.1393(8), where the
number in parentheses is the circumferential wave number. By comparison with S, = 0.1568(9)
given by Tabiei and Simitses (1994) based on the completely clamped boundary conditions, it can
be seen that the mixed boundary conditions yield appreciably lower buckling load and less
circumferential wave number than the completely clamped boundary conditions. However, for
long shells, the difference is negligible. For instance, for R/42 = 100 and L/R = 5, the present theory
gives buckling loads S% = S., = 0.0751(5) which is almost equal to S, = 0.0757(6) given by Tabiei
and Simitses (1994). The full profile of S.. vs L/R is shown in Fig. 1.

It may be interesting to take a look at the buckling mode. First it is found that the buckling
mode actually has a single wavelength in the circumferential direction while it is a combination of
many waves of different wavelengths in the axial direction. For instance, for R/h = 100 and
L/R = 1, the buckling mode is

We, =(—52.93sino, x+73.11sino, x+5.026 sin oz x+ - - -) cos 50
4+ (15.71 sin oy x+246.4sin o, x — 1.492 sin oy x4+ - - +) sin 50

in which all terms with the circumferential wave number n # 5 disappear because they are exactly
zero. This finding suggests an alternative way to calculate the buckling load. By fixing the number
n in series (13a—e); instead of taking summation for it, the procedure developed in the preceding
sections becomes simpler. For each specified n, the simplified procedure gives a buckling load S,,.

Sor
0.18

0.14
0.12F

0.1r
0.08
0.06
0.04

0.02f

0 1 1 L 1 1
0 2 4 6 8 10 12
L/R

Fig. 1. The curve of S, vs L/R at R/h = 100 for Example 1 is based on mixed boundary conditions. The stars are results
from Tabiei and Simitses (1994) based on completely clamped boundary conditions.
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As usual, the lowest S, for all # is the actual buckling load (critical load) S.,, and the number of n
which yields S, is the actual circumferential wave number of the buckling mode. But here in this
paper the authors prefer presenting the theory with double trigonometric series, instead of single
trigonometric series obtained by fixing #, because in the form of double trigonometric series the
theory can be extended to cover more general cases such as postbuckling.

The second detail about the buckling mode worth mentioning is that for each buckling load, the
computer gives two different buckling modes. This means that the corresponding eigenvalue is a
twofold repeated root. As a matter of fact, the two buckling modes can be obtained from each
other by suitable shift of the origin of the coordinate 0, which does not affect the buckling load.
To show this, let

We = (a, sino; x+a, sina,x+--+) cos pO+ (a, sino; x+a, sina,x+- - -) sin pf

be a buckling mode. The shift of the origin of 6 by &/p makes cos pf and sin pf be replaced by
cos(pf—¢) and sin(pd — &), respectively, and w, be transformed to another mode

We = [(a, cos E—a, sin &) sin o, x+ (a, cos E—a, sin &) sinoa, x+ - - -] cos pd
+[(a, siné+a, cos &) sino, x+ (a, sin E+a, cos &) sina, x+ - - -] sin pb

Thus, infinitely many such buckling modes can be obtained by assigning different values to £. But
the number of linearly independent modes is at most two. Therefore, for each buckling load the
computer gives only two different modes, not more, which represent the same actual physical
mode.

Another example is a clamped unsymmetrically laminated shell cited from Hui and Du (1987).
The stacking sequence is (90° in/0° out), with the ply properties

Ell/E22 = 100, GIZ/EZZ = 05, V|2 = 025, V23 = 04, G23/E22 = 027

For R/h = 100 and L/R = 1 the present theory gives the dimensionless critical shear stress

S..R
= 0.4996(9)

;=

Ter =
22

while Hui and Du (1987) gives 7., = 0.5027(9.4). The two results are quite close in both buckling
load and wave number. But for a shorter shell, say L/R = 0.5, the two results

7 = 0.8017(10) from the present theory
T = 0.9713(10) from Hui and Du (1987)

are appreciably different. Comparison for various R/ is shown in Fig. 2.

5. Conclusions

A new efficient method is developed in this paper to deal with mixed boundary conditions for
transversely shear deformable cylindrical shells. The main idea is to take the displacements and
forces related to the boundary conditions as basic unknowns and to express those not related to
the boundary conditions in terms of the basic unknowns by taking inverse of a matrix composed
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sor
1.2

08r

08

04

0.2r

o L 1 1 1 1
0 20 40 60 80 100 120

R/h

Fig. 2. The relationship between S, and R/h at L/R = 1 for Example 2. The thick curve is based on mixed boundary
conditions. The thin curve is based on completely clamped boundary conditions from Hui and Du (1987).

of operators. The numerical results of two torsional buckling problems of such shells show that
for short shells the present method makes improvement in calculation of buckling loads and wave
numbers compared with the methods in the literature which are based on fully clamped boundaries.

Appendix

The coeflicients in eqns (17)—(26) are listed below:

f?j[ = & f;;h = Oa f_‘;ﬁnn = ﬁn(éi,mfl _5i,m+1)5jm f‘%nn = Oa fZ'W = 0

Fi =1 18 =1 fom=—Fim [im=—Fiw i =17
T = AuBi KA Dyt (oo 7+ Aas [ RP) A Dy
+ B120if KA1 DA (Boa B — Aua/ RN )y
fﬁ]/’ = A0, A2+ (A2 f; + Aga/ RN,
+B12aiﬂj<A32>ij+(322ﬁ?_A44/R)<A42>ij

ff;mn = _(O(n171<A>mfl,n5i,m71 —05m+1<A>m+1,,15,',m+1)5jn
— A2 B (1 A3 D 1,n5i,m—1 _Ofm+1<A13>m+1,n5i,m+1)5_/n
— (A2 4 Aua/ R*) (A2 D0 101m—1 = A23 D 10 Oim+ 1)
— BB, (01 {A33 ), 1,/15f,m—1 — s 1 A3 Dt l,n5[.171+l)5jn
— (B2 fi — Aus/ B (A4 1.00im—1 = {A43 it 100 ims 1))
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ftL/fmn = _Al2ﬁn(amfl <Al4>m7],115i,mfl _am+1<A14>m+l,néi,erl)&jn
- (AZZﬁﬁ +A44/R2)(<A24>n17 1,n5i,mfl - <A24>m+1,115[,m+1)5jn
_Bl Zﬁn((xmf 1 <A34>mf l,néi,mfl - (mer 1 <A34>m+ l,nai,er 1 )5]'71
_(B22ﬂ1% _A44/R)(<A44>m71 néimfl _<A44>m+1,n5i,m+1)5/}1
Zow A +A vt vh
f;/ = 2 2 ﬁ <A>11+ 7]1/ + f ;

fij[ = f[j’ th = _fbhv f/jmn fljml‘l) f[jl‘”ﬂ _f%;ma f‘”t = _f“t

. A A +
f:; = _%ai</\ll>i,/ = ﬁ/<A21>1,
B B
_<I;2_A55>O(i</\3l>i/ (22—1‘144>ﬁ <A41>,/
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