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Abstract

A new e.cient method is developed in this paper for buckling analysis of a cross!ply laminated cylindrical
shell under torsion subjected to mixed boundary conditions[ The transverse shear is taken into account by
a _rst!order theory with a shear correction factor of 4:5[ The mixed boundary conditions include conditions
in forces as well as conditions in displacements\ and these forces and displacements are selected as basic
unknowns[ The other displacements and forces are expressed in terms of the basic unknowns by taking
inverse of a matrix composed of operators[ The equations of buckled equilibrium in terms of the basic
unknowns are solved with double trigonometric series which satisfy the mixed boundary conditions[ Com!
parison of the obtained numerical results with those given in the literature based on completely clamped
boundary conditions checks with the fact that the mixed boundary conditions yield appreciably lower
buckling load and less circumferential wave number than the completely clamped boundary conditions[ The
curves in the _gures show how the di}erence in buckling loads between the two kinds of boundary conditions
varies when the length and thickness of the shell vary[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The buckling of cylindrical shells under torsion "torsional buckling# has been much less studied in
contrast to the buckling under axial compression "compressive buckling#\ especially for anisotropic
shells[ The main di.culty involved in the torsional buckling is in that _rstly the nonlinear terms
in the equations of buckled equilibrium include partial derivatives both in axial direction and in
circumferential direction\ so that the single!wave buckling mode\ which is useful in the analysis of
compressive buckling\ does not work\ and secondly the boundary conditions in torsional force Txy

and in torsional moment Mxy can hardly be satis_ed beforehand by the assumed buckling mode[
Simitses and Shaw "0874# and Hui and Du "0876# solve the di.culty for Donnell!type shallow

� Corresponding author[
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shells without transverse shear by introducing a stress function and assuming a multi!wave buckling
mode such as truncated trigonometric series in u with the coe.cients being functions of x\ where
x is the axial coordinate in length and u is the circumferential coordinate in angle[ Thus the
equations of equilibrium and compatibility reduce to ordinary di}erential equations for the
coe.cients of the series\ and the original boundary conditions yield boundary conditions for the
solution of these ordinary di}erential equations[

In principle\ the above solution procedure may apply to non!shallow shells with transverse
shear[ But in this case the number of the unknowns will be _ve and\ due to the use of non!shallow
shell theory\ no simple stress function can be introduced to reduce that number[ The above solution
procedure will then be much more involved[ To solve the problem\ Tabiei and Simitses "0883#
express the equations of equilibrium in terms of the three displacements and two rotations and
solve them with double trigonometric series which vanish at the boundaries[ Tabiei and Simitses|
method is useful when all boundary conditions are in displacements and rotations\ i[e[\ the shell is
completely clamped at its ends\ or when the shell is long enough so that the boundary conditions
play little role[ However\ in the case of mixed boundary conditions\ some of the conditions are
given as boundary forces[ They can hardly be satis_ed beforehand by the double trigonometric
series for displacements and rotations assumed by Tabiei and Simitses "0883#[ That is why the
torsional buckling of transversely shear deformable shells under mixed boundary conditions has
not yet been studied much[

In many practical cases\ however\ the real physical boundaries may be described better by
mixed boundary conditions than by completely clamped boundary conditions[ Therefore\ solution
methods are needed to deal with mixed boundary conditions[ The present study undertakes this
task to develop such a method[ In the present study\ the displacements "including rotations# and
forces "including moments# appearing in the mixed boundary conditions are selected as basic
unknowns and are expressed in terms of di}erent kinds of double trigonometric series which satisfy
the mixed boundary conditions[ Then\ by taking inverse of a matrix composed of operators\ all
other displacements and forces\ and hence the _ve equations of buckled equilibrium\ can be
expressed in terms of the _ve basic unknowns[ Finally\ the application of the Galerkin procedure
to the equations of buckled equilibrium leads to an eigenvalue problem[ The numerical results of
examples show that the mixed boundary conditions lead to lower buckling load and less cir!
cumferential wave number of the buckling mode than the completely clamped boundary conditions[

1[ Basic equations

A thin cross!ply cylindrical shell subjected to torsion is under consideration[ In the _rst!order
shear!deformation theory the displacement _eld of a cylindrical shell is

ux � u¦zc\ uy � v¦z8\ uz � w "0#

where "x\ y\ z# are\ respectively\ the axial\ circumferential and normal coordinates in length\
"ux\ uy\ uz# are their corresponding displacement components at an arbitrary point of the shell\ and
"u\ v\ w# are those components at the middle surface[ The linear strains at an arbitrary point of the
shell can be derived from the displacement _eld\
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These strains coincide with the general _rst!order shear!deformation kinematic relations of Tabiei
and Simitses "0883# for linear case\ if the thin shell assumption z:R ð 0 is taken into account[

The de_nitions of the stress resultants are as usual

Tx � g sx dz\ Ty � g sy dz\ Mx � g sxz dz\ My � g syz dz

Txy � Tyx � g txy dz\ Mxy � Myx � g txyz dz

Qx � g txz dz\ Qy � g tyz dz "2#

where

g� g
h:1

−h:1

\ h is the thickness of the shell

By introducing vectors

"s# � "Tx\ Ty\ Txy\ Mx\ My\ Mxy\ Qy\ Qx#T

"o# � "ox\ oy\ gxy\ kx\ ky\ kxy\ gyz\ gxz#T
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are the strains and curvature changes of the middle surface\ the constitutive equations for cross!
ply laminates can be written in matrix form

"s# � ðCŁ"o# "3#

where
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The equations of equilibrium developed by Stein "0875# are used in the present study[ For a thin

shell\ after imposing the following three assumptions about the nonlinear terms]

"a# The only load is the boundary torques\ so that all nonlinear terms not related to the torsional
force Txy are neglected^

"b# All nonlinear terms not related to w or its derivatives are neglected^
"c# All nonlinear terms not in the equation of normal equilibrium are neglected^

these equations reduce to
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and the variationally consistent boundary conditions can be written in the form

"Txdu# =L9 � 9 "5a#

ð"Txy−S#dvŁ =L9 � 9 "5b#
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"Mxydc# =1p
9 � 9 "6d#

"Myd8# =1p
9 � 9 "6e#

The symbols =L9 and =1p
9 are de_ned as

"Txdu# =L9 � "Txdu#x�L−"Txdu#x�9\ and so on^

"Txydu# =1p
9 � "Txydu#u�1p−"Txydu#u�9\ and so on

where L and R are\ respectively\ the length and radius of the shell\ u � y:R and S is the torsional
force per unit length of y produced by the boundary torques[ Conditions "6aÐe# can be satis_ed
by the requirement that all displacements and forces appearing in these conditions be periodic in
u with a period equal to 1p[ For conditions "5aÐe#\ the following mixed boundary conditions are
assumed

Tx � 9\ Txy � S\ w � 9\ Mx � Mxy � 9 at x � 9\ L "7#

It is obvious that conditions "5aÐe# will be satis_ed if conditions "7# are satis_ed[
Equilibrium equations "4aÐe# and boundary conditions "5a#Ð"6e# coincide with those of Tabiei

and Simitses "0883# for thin shells using the _rst!order shear!deformation kinematic relations[ The
equations of Tabiei and Simitses "0883# is based on Donnell!type theory[ This suggests that the
error caused by the preceding assumptions "a#Ð"c# can be expected not to be larger than that of
Donnell!type theory[

More complete equations of equilibrium for a thin cylindrical shell are given by Flugge "0859#[
These equations correspond to a system of kinematic relations in which all nonlinear terms of u\ v
and w are retained[

2[ Solution

The _ve variables Tx\ Txy\ w\ Mx and Mxy appearing in the mixed boundary conditions "7# are
selected as basic unknowns[ The equations of buckled equilibrium "4aÐe# can be transformed into
a system of _ve equations in the basic unknowns by eliminating all other displacements and forces[
To do this\ the displacements and rotations u\ v\ c and 8 are expressed in terms of the basic
unknowns by using eqn "3# to obtain
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Let Gij represent the elements of ðGŁ\ Lij be the cofactor of the element Gji\ and L be the determinant
of ðGŁ[ They are all operators[ The inverse of ðGŁ can be written as

ðGŁ−0 � L−0 ðLijŁ "09#

Substitution of eqn "09# into eqn "8# gives
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The stress resultants Ty\ My\ Qx and Qy can then be expressed in terms of the basic unknowns
through the constitutive equations]
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By application of the operator L to each side of eqns "4bÐe# and using eqns "01aÐd# and eqn "00#
to eliminate Ty\ My\ Qx and Qy\ eqns "4aÐe# can be transformed into a system of _ve _nal equations
in the _ve basic unknowns[ These _nal equations are too lengthy to be presented here[

The _ve _nal equations are solved with truncated double trigonometric series

Tx � SSF1sin amx"Tmn cos nu¦TÞmn sin nu# "02a#

Txy � S¦S"cos am−0x−cos am¦0x#"Smn cos nu¦SÞmn sin nu# "02b#

w � S sin amx"Wmn cos nu¦WÞ mn sin nu# "02c#
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Mx � S sin amx"Hmn cos nu¦HÞmn sin nu# "02d#

Mxy � S"cos am−0x−cos am¦0x#"Fmn cos nu¦FÞmn sin nu# "02e#

where\ and in the following\ the symbols

S � s
M

m�0

s
M

n�0

\ am �
mp

L

are used for brevity in writing[ The constant coe.cients Tmn\ TÞmn\ [ [ [ \ FÞmn are to be determined[
Trigonometric series "02# satisfy the mixed boundary conditions "7#[

Before using the Galerkin procedure\ a closer inspection of the operators in eqns "00# is useful[
The operator L is a fourth!order homogeneous polynomial in 1:1x and 1:1y[ Each term of the
polynomial includes one of the operators 13:1x3\ 13:"1x1 1y1# and 13:1y3[ Therefore\ when the
operator L is applied to a product of trigonometric functions such as sin amx cos nu\ a very simple
result can be obtained

L"sin amx cos nu# � ðLŁmn sin amx cos nu "03#

where the symbol ðLŁmn is a number denoting the determinant of a matrix obtained by replacing
1:1x and 1:1y with am and bn\ respectively\ in the operator L\ where bn � n:R[ Each of the operators
Lij "i\ j � 0\ 1\ 2\ 3# is a third!order polynomial in 1:1x and 1:1y[ Each term of the polynomial
includes one of the operators 12:1x2\ 12:"1x1 1y#\ 12:"1x 1y1# and 12:1y2[ Further\ it is found that for
an operator Lij\ the terms of its polynomial are either all in 12:1x2 and 12:"1x 1y1#\ or all in 12:1y
and 12:"1x1 1y#[ Therefore\ the operators Lij are divided into two groups\ one with odd power of
1:1x for all terms\ the other with odd power of 1:1y for all terms[ It is obvious that for an Lij from
the _rst group\ the following relationships are valid]

Lij"sin amx cos nu# � −ðLijŁmn cos amx cos nu "04a#

Lij"sin amx sin nu# � −ðLijŁmn cos amx sin nu "04b#

Lij"cos amx cos nu# � ðLijŁmn sin amx cos nu "04c#

Lij"cos amx sin nu# � ðLijŁmn sin amx sin nu "04d#

and for an Lij from the second group\ eqns "04aÐd# should be replaced by

Lij"sin amx cos nu# � ðLijŁmn sin amx sin nu "05a#

Lij"sin amx sin nu# � −ðLijŁmn sin amx cos nu "05b#

Lij"cos amx cos nu# � ðLijŁmn cos amx sin nu "05c#

Lij"cos amx sin nu# � −ðLijŁmn cos amx cos nu "05d#

where the symbol ðLijŁmn is a number obtained by replacing 1:1x and 1:1y with am and bn\
respectively\ in the operator Lij[

Substituting the trigonometric series "02aÐe# into the _ve _nal equations "not presented#\ taking
into account eqns "04aÐd# and "05aÐd# and executing the Galerkin procedure yield the following
algebraic equations]
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where i � 0\ 1\ [ [ [ \ M^ j � 0\ 1\ [ [ [ \ N\ and

hij �
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In the derivation of eqns "10# and "11# the assumption

1Txy

11w
1x 1y

¼ 1S
11w
1x 1y

has been made for linearization so that an eigenvalue problem can be obtained[ All the coe.cients
in eqns "06#Ð"15# are listed in the Appendix[

From eqns "06# and "12#\ Tij and Hij can be solved in terms of SÞij\ FÞij and Wij[ Similarly\ from
eqns "07# and "13#\ TÞij and HÞij can be solved in terms of Sij\ Fij and WÞ ij[ By using these results\ Tij\
Hij\ TÞij and HÞij in eqns "10#\ "11#\ "19#\ "15#\ "08# and "14# are eliminated to give

S"CÞws
ijmnSÞmn¦CÞwf

ijmnFÞmn#¦Cww
ij Wij¦1SSambnðLŁmnhimdjnWÞ mn � 9 "16a#
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bfw
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The expressions of the new coe.cients appearing in eqns "16aÐd# are not given here for the sake
of brevity[

By introducing vectors

"q# � "S00\ S10\ [ [ [ \ SM0\ [ [ [ \ S0N\ S1N\ [ [ [ \ SMN\ F00\ F10\ [ [ [ \ FM0\ [ [ [ \ F0N\ F1N\ [ [ [ \ FMN#T
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"q¹# � the same as above but with a super bar on each element[

"h# � "W00\ W10\ [ [ [ \ WM0\ [ [ [ \ W0N\ W1N\ [ [ [ \ WMN#T

"h¹# � the same as above but with a super bar on each element[

eqns "16aÐd# can be transformed into matrix form

ðVÞŁ"q¹#¦ðDŁ"h#¦SðEÞŁ"h¹# � 9 "17a#

ðVŁ"q#¦ðDÞŁ"h¹#−SðEŁ"h# � 9 "17b#

ðFŁ"q# � ðCÞŁ"h¹# "17c#

ðFÞŁ"q¹# � ðCŁ"h# "17d#

Again the expressions of the coe.cient matrices in "17aÐd# are not presented[ Eliminating "q# and
"q¹# in eqns "17aÐd# yields a set of equations in "h# and "h¹#\

ðK Ł"h#¦SðEÞŁ"h¹# � 9 "18a#

ðKÞ Ł"h¹#−SðE Ł"h# � 9 "18b#

where

ðK Ł � ðVÞŁ ðFÞŁ−0 ðCŁ¦ðDŁ

ðKÞ Ł � ðVŁ ðFŁ−0 ðCÞŁ¦ðDÞŁ

Eqns "18b# and "18a# give

"h# �
0
S

ðE Ł−0 ðKÞ Ł"h¹# "29#

"ðAŁ−S1 ðI Ł#"h¹# � 9 "20#

where ðI Ł is a unit matrix and ðAŁ is de_ned by

ðAŁ � −ðEÞŁ−0 ðK Ł ðE Ł−0 ðKÞ Ł

Eqn "20# is the eigenvalue problem for the buckling load\ Scr\ and half of the buckling mode
vector\ "h¹cr#[ The other half\ "hcr#\ can be obtained with eqn "29#[ From eqn "20# it is found that
if Scr is a buckling load\ then −Scr is a buckling load\ too[ This conclusion is in agreement with
the fact that if a boundary torque causes buckling\ then the reverse of it causes buckling\ too[

3[ Numerical examples

The _rst example is a laminated cylindrical shell studied by Tabiei and Simitses "0883#\ with the
ply properties

E00 � 038[508 GPa\ E11 � E22 � 8[817 GPa\ G01 � G02 � 3[370 GPa

G12 � 1[440 GPa\ n01 � n02 � 9[17\ n12 � 9[34
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and the stacking sequence "9>:89>:9>#s[ It is obvious that the more terms are used in the truncated
series "02aÐe#\ the better results can be obtained and larger amount of computation is needed[ The
study of convergence indicates that M � 5 and N � 09 can guarantee that the buckling load to be
obtained has more than four signi_cant digits for all examples studied in this Section[ Let S�cr and
Scr denote\ respectively\ the buckling loads based on the _rst!order shear deformation theory with
and without a shear correction factor of 4:5[ For R:h � 099\ L:R � 0 and h � 9[990894 m\ the
calculation gives the buckling loads "in 095 N:m# S�cr � 9[0280"7# and Scr � 9[0282"7#\ where the
number in parentheses is the circumferential wave number[ By comparison with Scr � 9[0457"8#
given by Tabiei and Simitses "0883# based on the completely clamped boundary conditions\ it can
be seen that the mixed boundary conditions yield appreciably lower buckling load and less
circumferential wave number than the completely clamped boundary conditions[ However\ for
long shells\ the di}erence is negligible[ For instance\ for R:h � 099 and L:R � 4\ the present theory
gives buckling loads S�cr � Scr � 9[9640"4# which is almost equal to Scr � 9[9646"5# given by Tabiei
and Simitses "0883#[ The full pro_le of Scr vs L:R is shown in Fig[ 0[

It may be interesting to take a look at the buckling mode[ First it is found that the buckling
mode actually has a single wavelength in the circumferential direction while it is a combination of
many waves of di}erent wavelengths in the axial direction[ For instance\ for R:h � 099 and
L:R � 0\ the buckling mode is

wcr �"−41[82 sin a0x¦62[00 sin a1x¦4[915 sin a2x¦= = =# cos 4u

¦"04[60 sin a0x¦135[3 sin a1x−0[381 sin a2x¦= = =# sin 4u

in which all terms with the circumferential wave number n � 4 disappear because they are exactly
zero[ This _nding suggests an alternative way to calculate the buckling load[ By _xing the number
n in series "02aÐe#^ instead of taking summation for it\ the procedure developed in the preceding
sections becomes simpler[ For each speci_ed n\ the simpli_ed procedure gives a buckling load Sn[

Fig[ 0[ The curve of Scr vs L:R at R:h � 099 for Example 0 is based on mixed boundary conditions[ The stars are results
from Tabiei and Simitses "0883# based on completely clamped boundary conditions[
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As usual\ the lowest Sn for all n is the actual buckling load "critical load# Scr\ and the number of n
which yields Scr is the actual circumferential wave number of the buckling mode[ But here in this
paper the authors prefer presenting the theory with double trigonometric series\ instead of single
trigonometric series obtained by _xing n\ because in the form of double trigonometric series the
theory can be extended to cover more general cases such as postbuckling[

The second detail about the buckling mode worth mentioning is that for each buckling load\ the
computer gives two di}erent buckling modes[ This means that the corresponding eigenvalue is a
twofold repeated root[ As a matter of fact\ the two buckling modes can be obtained from each
other by suitable shift of the origin of the coordinate u\ which does not a}ect the buckling load[
To show this\ let

wc0 �"a0 sin a0x¦a1 sin a1x¦= = =# cos pu¦"a¹0 sin a0x¦a¹1 sin a1x¦= = =# sin pu

be a buckling mode[ The shift of the origin of u by j:p makes cos pu and sin pu be replaced by
cos"pu−j# and sin"pu−j#\ respectively\ and wc0 be transformed to another mode

wc1 � ð"a0 cos j−a¹0 sin j# sin a0x¦"a1 cos j−a¹1 sin j# sin a1x¦= = =Ł cos pu

¦ð"a0 sin j¦a¹0 cos j# sin a0x¦"a1 sin j¦a¹1 cos j# sin a1x¦= = =Ł sin pu

Thus\ in_nitely many such buckling modes can be obtained by assigning di}erent values to j[ But
the number of linearly independent modes is at most two[ Therefore\ for each buckling load the
computer gives only two di}erent modes\ not more\ which represent the same actual physical
mode[

Another example is a clamped unsymmetrically laminated shell cited from Hui and Du "0876#[
The stacking sequence is "89> in:9> out#\ with the ply properties

E00:E11 � 09[9\ G01:E11 � 9[4\ n01 � 9[14\ n12 � 9[3\ G12:E11 � 9[16

For R:h � 099 and L:R � 0 the present theory gives the dimensionless critical shear stress

tcr �
ScrR

E11T
1
� 9[3885"8#

while Hui and Du "0876# gives tcr � 9[4916"8[3#[ The two results are quite close in both buckling
load and wave number[ But for a shorter shell\ say L:R � 9[4\ the two results

tcr � 9[7906"09# from the present theory

tcr � 9[8602"09# from Hui and Du "0876#

are appreciably di}erent[ Comparison for various R:h is shown in Fig[ 1[

4[ Conclusions

A new e.cient method is developed in this paper to deal with mixed boundary conditions for
transversely shear deformable cylindrical shells[ The main idea is to take the displacements and
forces related to the boundary conditions as basic unknowns and to express those not related to
the boundary conditions in terms of the basic unknowns by taking inverse of a matrix composed
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Fig[ 1[ The relationship between Scr and R:h at L:R � 0 for Example 1[ The thick curve is based on mixed boundary
conditions[ The thin curve is based on completely clamped boundary conditions from Hui and Du "0876#[

of operators[ The numerical results of two torsional buckling problems of such shells show that
for short shells the present method makes improvement in calculation of buckling loads and wave
numbers compared with the methods in the literature which are based on fully clamped boundaries[

Appendix

The coe.cients in eqns "06#Ð"15# are listed below]

f ut
ij � ai\ f uh

ij � 9\ f¹ us
ijmn � bn"di\m−0−di\m¦0#djn\ f¹ uf

ijmn � 9\ f uw
ij � 9

f¹ ut
ij � f ut

ij \ f¹ uh
ij � f uh

ij \ f us
ijmn � −f¹ us

ijmn\ f uf
ijmn � −f¹ uf

ijmn\ f¹ uw
ij � f uw

ij

f¹ vt
ij � A01aibjðL00Łij¦"A11b

1
j ¦A33:R

1#ðL10Łij

¦B01aibjðL20Łij¦"B11b
1
j −A33:R#ðL30Łij

f¹ vh
ij � A01aibjðL01Łij¦"A11b

1
j ¦A33:R

1#ðL11Łij

¦B01aibjðL21Łij¦"B11b
1
j −A33:R#ðL31Łij

f vs
ijmn � −"am−0ðLŁm−0\ndi\m−0−am¦0ðLŁm¦0\ndi\m¦0#djn

−A01bn"am−0ðL02Łm−0\ndi\m−0−am¦0ðL02Łm¦0\ndi\m¦0#djn

−"A11b
1
n¦A33:R

1#"ðL12Łm−0\ndi\m−0−ðL12Łm¦0\ndi\m¦0#djn

−B01bn"am−0ðL22Łm−0\ndi\m−0−am¦0ðL22Łm¦0\ndi\m¦0#djn

−"B11b
1
n−A33:R#"ðL32Łm−0\ndi\m−0−ðL32Łm¦0\ndi\m¦0#djn
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f vf
ijmn � −A01bn"am−0ðL03Łm−0\ndi\m−0−am¦0ðL03Łm¦0\ndi\m¦0#djn

−"A11b
1
n¦A33:R

1#"ðL13Łm−0\ndi\m−0−ðL13Łm¦0\ndi\m¦0#djn

−B01bn"am−0ðL23Łm−0\ndi\m−0−am¦0ðL23Łm¦0\ndi\m¦0#djn

−"B11b
1
n−A33:R#"ðL33Łm−0\ndi\m−0−ðL33Łm¦0\ndi\m¦0#djn

f¹ vw
ij � −

A11¦A33

R
bjðLŁij¦

A01

R
f¹ vt

ij ¦
B01

R
f¹ vh

ij

f vt
ij � −f¹ vt

ij \ f vh
ij � −f¹ vh

ij \ f¹ vs
ijmn � f vs

ijmn\ f¹ vf
ijmn � f vf

ijmn\ f vw
ij � −f¹ vw

ij

f wt
ij � −

A01

R
aiðL00Łij−

A11¦A33

R
bjðL10Łij

−0
B01

R
−A441 aiðL20Łij−0

B11

R
−A331 bjðL30Łij

f wh
ij � −

A01

R
aiðL01Łij−

A11¦A33

R
bjðL11Łij

−0
B01

R
−A441 aiðL21Łij−0

B11

R
−A331 bjðL31Łij

f¹ ws
ijmn � −

A01

R
"am−0ðL02Łm−0\ndi\m−0−am¦0ðL02Łm¦0\ndi\m¦0#djn

−
A11¦A33

R
bn"ðL12Łm−0\ndi\m−0−ðL12Łm¦0\ndi\m¦0#djn

−0
B01

R
−A441"am−0ðL22Łm−0\ndi\m−0−am¦0ðL22Łm¦0\ndi\m¦0#djn

−0
B11

R
−A331 bn"ðL32Łm−0\ndi\m−0−ðL32Łm¦0\ndi\m¦0#djn

f¹ wf
ijmn � −

A01

R
"am−0ðL03Łm−0\ndi\m−0−am¦0ðL03Łm¦0\ndi\m¦0#djn

−
A11¦A33

R
bn"ðL13Łm−0\ndi\m−0−ðL13Łm¦0\ndi\m¦0#djn

−0
B01

R
−A441"am−0ðL23Łm−0\ndi\m−0−am¦0ðL23Łm¦0\ndi\m¦0#djn

−0
B11

R
−A331 bn"ðL33Łm−0\ndi\m−0−ðL33Łm¦0\ndi\m¦0#djn
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f ww
ij � −0A44a

1
i ¦A33b

1
j ¦

A11

R1 1 ðLŁij−
A01

R
f wt

ij −
B01

R
f wh

ij

f¹ wt
ij � f wt

ij \ f¹ wh
ij � f wh

ij \ f ws
ijmn � −f¹ ws

ijmn\ f wf
ijmn � −f¹ wf

ijmn\ f¹ ww
ij � f ww

ij

f ct
ij � A44ðL20Łij

f ch
ij � aiðLŁij¦A44ðL21Łij

f¹ cs
ijmn � A44"ðL22Łm−0\ndi\m−0−ðL22Łm¦0\ndi\m¦0#djn

f¹ cf
ijmn � ðbn"ðLŁm−0\ndi\m−0−ðLŁm¦0\ndi\m¦0#

¦A44"ðL23Łm−0\ndi\m−0−ðL23Łm¦0\ndi\m¦0#Łdjn

f cw
ij � A44aiðLŁij¦

A01

R
f ct

ij ¦
B01

R
" f ch

ij −aiðLŁij#

f¹ ct
ij � f ct

ij \ f¹ ch
ij � f ch

ij \ f cs
ijmn � −f¹ cs

ijmn\ f cf
ijmn � −f¹ cf

ijmn\ f¹ cw
ij � f cw

ij

f¹ ft
ij � 0A01¦

B01

R 1 aibjðL00Łij¦0A11¦
B11

R 1 b1
j ðL10Łij

¦0B01¦
D01

R 1 aibjðL20Łij¦0B11¦
D11

R 1 b1
j ðL30Łij

f¹ fh
ij � 0A01¦

B01

R 1 aibjðL01Łij¦0A11¦
B11

R 1 b1
j ðL11Łij

¦0B01¦
D01

R 1 aibjðL21Łij¦0B11¦
D11

R 1 b1
j ðL31Łij

f fs
ijmn � −"am−0ðLŁm−0\ndi\m−0−am¦0ðLŁm¦0\ndi\m¦0#djn

−0A01¦
B01

R 1 bn"am−0ðL02Łm−0\ndi\m−0−am¦0ðL02Łm¦0\ndi\m¦0#djn

−0A11¦
B11

R 1 b1
n "ðL12Łm−0\ndi\m−0−ðL12Łm¦0\ndi\m¦0#djn

−0B01¦
D01

R 1 bn"am−0ðL22Łm−0\ndi\m−0−am¦0ðL22Łm¦0\ndi\m¦0#djn

−0B11¦
D11

R 1 b1
n "ðL32Łm−0\ndi\m−0−ðL32Łm¦0\ndi\m¦0#djn

f fs
ijmn � −

0
R

"am−0ðLŁm−0\ndi\m−0−am¦0ðLŁm¦0\ndi\m¦0#djn
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−0A01¦
B01

R 1 bn"am−0ðL03Łm−0\ndi\m−0−am¦0ðL03Łm¦0\ndi\m¦0#djn

−0A11¦
B11

R 1 b1
n "ðL13Łm−0\ndi\m−0−ðL13Łm¦0\ndi\m¦0#djn

−0B01¦
D01

R 1 bn"am−0ðL23Łm−0\ndi\m−0−am¦0ðL23Łm¦0\ndi\m¦0#djn

−0B11¦
D11

R 1 b1
n "ðL33Łm−0\ndi\m−0−ðL33Łm¦0\mdi\m¦0#djn

f¹ fw
ij � −

0
R 0A11¦

B11

R 1 bjðLŁij¦
A01

R
f¹ ft

ij ¦
B01

R
f¹ fh

ij

f ft
ij � −f¹ ft

ij \ f fh
ij � −f¹ fh

ij \ f¹ fs
ijmn � f fs

ijmn\ f¹ ff
ijmn � f ff

ijmn\ f fw
ij � −f¹ fw

ij
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